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Abstract. An inverse problem of determination of a coefficient in an elliptic equation is considered.
This problem is ill-posed in the sense of Hadamard and Tikhonov’s regularization method is used for
solving it in a stable way. This method requires globally solving nonconvex optimization problems,
the solution methods for which have been very little studied in the inverse problems community. It is
proved that the objective function of the corresponding optimization problem for our inverse problem
can be represented as the difference of two convex functions (d.c. functions), and the difference of
convex functions algorithm (DCA) in combination with a branch-and-bound technique can be used
to globally solve it. Numerical examples are presented which show the efficiency of the method.
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1. Introduction

Inverse problems for differential equations are frequently encounted in science,
engineering, geophysics, medicine, etc. Following J.B. Keller [12], “we call two
problems inverse of one another if the formulation of each involves all or part of
the solution of the other. Often, for historical reasons, one of the two problems has
been extensively studied for some time, while the other is newer and not so well
understood. In such cases, the former is called the direct problem, while the latter
is called the inverse problem”. For references on inverse problems we refer the
reader to Bui [1], Groetsch [9], Isakov [11], Engl et al [5], Tikhonov et al [28] and
the references therein.

Let � be a bounded domain in R
n (n = 1, 2, 3). Consider the boundary value

problem

−�u+ cu = f in �
u = g on ∂�.

(1)
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Traditionally, in this problem the functions c, f, g are given and u is to be found;
this is the direct problem. With appropriate conditions on �, c, f and g there is a
unique solution of (1) (see Section 2) and it is well-posed in the sense of Hadamard.
In this paper we consider the inverse problem of determination of the coefficient
c(x) from u given in the whole domain �.

Inverse problems are sometimes non-linear (the above inverse problem is non-
linear) and mainly ill-posed. The last means that (1) inverse problems might not
have a solution in some sense, (2) if there is a solution, it might not be unique, (3)
and/or might not continuously depend on the data. The instability of the solution
with respect to the data makes severe difficulties, as a small error in the data may
cause dramatically large errors in the solution. The classical numerical methods
for well-posed problems are no more applicable to ill-posed problems, the new
appropriate ones (regularization methods) are required. For references on such
methods, again we refer the reader to Isakov [11], Engl et al. [5], Tikhonov et
al. [28] and the references therein.

One of the most popular methods for solving ill-posed problems is Tikhonov’s
regularization method. As the inverse problem of determination of c from u is
ill-posed (see Section 2 below), we have to use a regularization method for it. Let
z ∈ L2(�) be an observation for u. One of the variants of Tikhonov’s regularization
method for our inverse problem has the form

min

{
Jα(c) := 1

2
‖u(c)− z‖2

L2(�)
+ α

2
‖L(c − c∗)‖2

Y , c ∈ C.
}

(2)

Here α > 0 is the Tikhonov regularization parameter which has to be determ-
ined from the noisy data z and noise level ε, C is the domain in which c lives,
c∗ plays the role of a selection criterion or a guess for the unknown c, L and
Y are some appropriate operator and space, respectively. (For more details, see
Section 2). The solution of the problem (2) is stable with respect to the noise level
in z, and if α is chosen properly with respect to the noise level ε, it can be proved
that the solution of the problem (2) converges to the exact solution of our inverse
problem as the noise level tends to zero (see Engl et al. [5, 8]). However, one
of the main problems of Tikhonov regularization method, how to solve the non-
linear optimization problem (2), has been very little studied in the inverse problems
community. If one cannot find a global solution of (2), the regularization method
of Tikhonov does not seem to work. The main purpose of this paper is to fill this
gap in the literature.

Our motivation comes from the fact that the functional Jα(x) is a d.c. one. It
means that it can be represented as the difference of two convex functions. There-
fore, we can consider (2) as a d.c. program. One of the most efficient and robust
algorithms for large scale d.c. programming is the difference of convex functions
algorithm (DCA) suggested by Pham Dinh Tao [22, 23] (see also [15, 18, 24, 25]).
DCA is an iterative method which solves, at each iteration, a convex subproblem.
The main idea of this algorithm is to work with convex programs which approx-
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imate the primal and dual problems, via the d.c. duality. Since DCA is a local
method for nonconvex optimization problems, in general, we should combine it
with some other techniques to find global solutions of the problem (2). We shall
use the branch-and-bound technique for this purpose in this paper.

In the next section we shall study the inverse problem of determining the coef-
ficient c from the observation z of u. We shall prove that this problem is ill-posed,
and the functional (2) is d.c. In Section 3 we shall outline DCA and branch-and-
bound techniques for (2). Finally, in Section 4 a numerical example is presented.

This paper is the second one of our work on applying the techniques of d.c.
programming to non-linear ill-posed problems (see [20, 21]).

2. Inverse problem

Let � be a bounded domain in R
n(n = 1, 2, 3). For n = 1 we set � = (0, 1).

For n = 2, 3 we suppose that � is a sphere, a sphere shell, a parallelepiped, or a
domain that can be transformed into one of these domains by a regular mapping
y = y(x) ∈ C2(�̄) (see [14, p. 74]). Consider the boundary value problem

−�u+ cu = f in �
u = g on ∂�,

(3)

where f and g are functions in L2(�) and H 3/2(∂�), respectively. We suppose
that c ∈ C, where

C = {c ∈ L2(�), 0 < c1 � c(x) � c2 < ∞ a.e.},
c1, c2 are given positive numbers.

We note that with these assumptions there exists a unique solution u ∈ H 2(�)

of the problem (3). Further, there exists a constant k that depends only on � and c2

such that

‖u‖H 2(�) � k(‖f ‖L2(�) + ‖g‖H 3/2(∂�)). (4)

In what follows for short we set

R := ‖f ‖L2(�) + ‖g‖H 3/2(∂�).

Now we consider the inverse problem (we call it (IP)) of determining the coef-
ficient c(x) from a noisy observation z ∈ L2(�) of u:

‖z − u‖L2(�) � ε. (5)

(The number ε is called the noise level.) This problem is ill-posed as the following
example shows.
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EXAMPLE . Consider the direct problem

− uxx(x)+ c(x)u(x) = f, 0 < x < π,

u(0) = g1 u(π) = g2,
(6)

Suppose that 0 < c1 � c(x) � c2, f ∈ L2(0, π). Then there is a unique
solution u to this problem. We choose g1, g2 and f in such a way that u > 1, or
simple prescribe u > 1 and then choose g1, g2 and f . Let now u be inexactly given
by uε and c be found from uε . For example, let

uε(x) = u(x)+ ε sin(nx), 0 < ε < 1.

Then we can verify that

cε(x) = f (x)+ uxx(x)− n2ε sin(nx)

u(x)+ ε sin(nx)

is a solution of the inverse problem with respect to the data uε .
We observe that

c − cε = c
ε sin(nx)

u+ ε sin(nx)
+ n2 ε sin(nx)

u+ ε sin(nx)
.

Take, for example, x = π/2, n = 2m+ 1. Since u > 1, 0 < ε < 1,

c − cε = c
ε

u+ ε
+ (2m+ 1)2 ε

u+ ε
→∞, as m→ ∞.

Thus, although the noise level ε in the data is small, the errors in the solution of the
inverse problem are arbitrary large. The problem is ill-posed!

A natural way to solving the inverse problem (IP) is to minimize the output least
squares functional

J (c) = 1

2
‖u(c)− z‖2

L2(�)

over C. However, since (IP) is ill-posed, this variational problem has the same
nature. Tikhonov’s regularization method should therefore be used. Namely, we
minimize the regularized functional

Jα(c) := J (c)+ α

2
‖c − c∗‖2

L2(�)
(7)

over C. Here c∗ ∈ L∞(�) is a guess for c or a selection for c. As it has been proved
in Chavent and Kunisch [2], Engl et al. [8], if we choose α = √

ε, then as ε tends
to zero the solution of (7) tends to the solution of (IP) which is nearest c∗. There are
many other methods of choosing the regularization parameter α to guarantee this
convergence property, see, e.g., Engl et al. [5], Kunisch and Ring [13], Tikhonov
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et al. [28], however in this paper we use this method only, as our main aim is to
suggest a method for globally solving (7).

Now we study some properties of the functional J . The nonlinear mapping
F : D(F) ⊆ L2(�)→ H 2(�) is defined as the parameter-to-solution mapping

F(c) = u(c),

with u(c) being the solution of (3) and, with some ε̂ > 0,

D(F) := {c ∈ L2(�) : ‖c − ĉ‖ � ε̂ for some ĉ ∈ U}.
Following [3, 4] it can be proved that F : L2(�) → H 2(�) is twice continu-

ously Fréchet differentiable, its first differential F ′(c)h = u′(c)h := η in direction
h ∈ L2(�) is the solution of the problem

−�η + cη = −hu(c) in �

η = 0 on ∂�,
(8)

and its second derivative in direction (h, h1) ∈ L2(�)× L2(�)

(u′′(c)h, h1) := ξ(h, h1) := ξ

is the unique solution of the problem

−�ξ + cξ = −h(u′(c)h1)− h1(u
′(c)h) in �

ξ = 0 on ∂�.
(9)

Since u ∈ H 2(�), n = 1, 2, 3, u ∈ L∞(�). It follows that hu ∈ L2(�). Hence,
η ∈ H 2(�) ∩H 1

0 (�). Analogously, ξ ∈ H 2(�) ∩H 1
0 (�).

It is clear now that J is twice continuously Fréchet differentiable and

J ′(c)h = (u′(c)h, u(c)− z) (10)

and

(J ′′(c)h, h) = ‖u′(c)h‖2 + (u(c)− z, (u′′(c)h, h)). (11)

Here and hereafter (·, ·) and ‖ · ‖ are the inner product and norm in L2(�), respect-
ively.

Now we estimate (J ′′(c)h, h). In doing so, we note that, since n ∈ {1, 2, 3}, for
any ψ ∈ H 2(�), there is a constant k1 depends only on � such that (see, e.g. [14,
p. 38–39])

‖ψ‖L∞(�) � k1‖ψ‖H 2(�). (12)

Hence, from (8), (4) and (12),

‖u′(c)h‖ � k‖hu(c)‖
� k‖u(c)‖L∞(�)‖h‖
� kk1‖u(c)‖H 2(�)‖h‖
� k2k1R‖h‖. (13)
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Further, the last inequality and (9) yield

‖(u′′(c)h, h)‖ � 2k‖h(u′(c)h)‖
� 2k‖u′(c)h‖L∞(�)‖h‖
� 2kk1‖u′(c)h‖H 2(�)‖h‖
� 2k3k2

1R‖h‖2.

Thus,

|(J ′′(c)h, h)| � k4k2
1R2‖h‖2 + 2k3k2

1R(kR+ ‖z‖)‖h‖2.

Hence, with

ρ = k4k2
1R2 + 2k2k2

1R(kR+ ‖z‖) (14)

the functional

J (c)+ ρ

2
‖c‖2

is convex. Thus, the functional Jα(c) is d.c., since we can represent it as the differ-
ence of two convex functions, for example,

Jα(c) = ρ

2
‖c‖2 −

(ρ
2
‖c‖2 − J (c)− α

2
‖c‖2

)
. (15)

REMARK 2.1. In many cases we can estimate the sup-norm of the solution of a
boundary value problem for elliptic equations by the maximum principle so that
the upper bound for ‖J ′′‖ can be easier obtained.

To apply DCA (see Section 3)) to our problem we need also a convenient rep-
resentation for J ′(c). It can be seen from (10) that J ′(c)h = ((u′(c)∗)(u(c)−z), h).
We prove that in fact

J ′(c)h = −
∫
�

u(c)ϕh dx, (16)

where ϕ be the solution of the adjoint problem

−�ϕ + cϕ = u(c)− z in �

ϕ = 0 on ∂�.
(17)

This may have already been proved somewhere else, however, for completeness
we outline a proof here.

First, we note that ϕ ∈ H 2(�) ∩H 1
0 (�), and

‖ϕ‖H 2(�) � k‖u(c)− z‖ � k(kR+ ‖z‖). (18)
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For h ∈ L2(�) ∩ L∞(�), set

v = u(c + h)− u(c).

We have

v = u(c + h)− u(c) = u′(c)h+ r,

where r := r(c, h) and

lim
‖h‖→0

‖r‖
‖h‖ = 0.

Besides, v ∈ H 2(�) ∩H 2
0 (�) is the unique solution of the problem

−�v + cv = −hu(c + h) in �
v = 0 on ∂�.

(19)

It easily follows

J (c + h)− J (c) = (u(c)− z, v)+ 1

2
‖v‖2

= −
∫
�

u(c + h)ϕh dx + 1

2
‖v‖2

= −
∫
�

(u(c)+ u′(c)h+ r)ϕh dx + 1

2
‖v‖2

= −
∫
�

u(c)ϕhdx −
∫
�

((u′(c)h)+ r)ϕh dx + 1

2
‖v‖2.

Routine estimates yield

J (c + h)− J (c) = −
∫
�

u(c)ϕh dx + o(‖h‖).

On the other hand, from (18), (4) and (17) we have

| −
∫
�

u(c)ϕh dx| � ‖ϕ‖L∞(�)‖u(c)‖ · ‖h‖
� k1‖ϕ‖H 2(�)‖u(c)‖ · ‖h‖
� k2k1(kR+ ‖z‖)R‖h‖.

Thus, (16) is proved.

3. DCA and branch-and-bound method

To solve (7) numerically we have to work with its finite-dimensional setting. For
example, suppose that for any given c ∈ C with some discretization method we
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can approximate the solution of the direct problem (3) via u1, u2, . . . , un and
the solution of the adjoint problem (17) via ϕ1, ϕ2, . . . , ϕn. (We note that (7) and
(17) of the same type, so to solve them numerically, we can use the same code).
Suppose further that this discretization method approximates c with the aid of
[c] = (c1, c2, . . . , cn) and the ci belong to C̃ := {c : c̃1 � c � c̃2}. The functional
Jα has now the form

Iα([c]) = 1

2

n∑
i=1

βi |ui([c])− zi|2 + α

2
βi

n∑
i=1

(ci − c∗i )
2.

Here we use the symbol I for finite-dimensional functionals and βi, i = 1, 2, . . . , n
are some defined numbers, which depend on the discretization method.

The gradient of Iα([c]) has the form

∂Iα([c])
∂ci

= −βiui([c])ϕi + αβi(ci − c∗i ).

Thus, we have a finite-dimensional (non-convex) optimization problem:

min{Iα([c]) : c ∈ C̃}. (20)

In this section we describe two approaches to solve a more general problem of
the form

α := min{f (x) : x ∈ -n
1[ai, bi],−∞ < ai � bi <∞, i = 1, 2, . . . , n},

(21)

where f is a real valued function that is not given in explicit form but a gradient
of f can be computed. In the next section we will show how our approaches work
for (20). Before going further we outline some notions in convex analysis for the
reader’s convenience.

We follow [27] for definitions of usual tools of convex analysis where functions
could take infinite values ±∞. A function θ : R

n → R∪{±∞} is said to be proper
if it takes nowhere the value −∞ and is not identically equal to +∞. The effective
domain of θ , denoted by dom θ , is

dom θ = {x ∈ R
n : θ(x) < ∞}.

The “convex cone” of all lower semicontinuous proper convex functions on R
n

is denoted 10(R
n). For g ∈ 10(R

n), the conjugate function g∗ of g is a function
belonging to 10(R

n) and defined by

g∗(y) = sup{〈x, y〉 − g(x) : x ∈ R
n}.

and we have g∗∗ = g.

Let g ∈ 10(R
n) and let x0 ∈ dom g, then ∂g(x0) stands for the subdifferential

of g at x0 and is given by

∂εg(x
0) = {y0 ∈ R

n : g(x) � g(x0)+ 〈x − x0, y0〉,∀x ∈ R
n}.
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Further, by ρ(g) we denote the modulus of strong convexity of g,

ρ(g) = sup{ρ � 0 : g − (ρ/2)‖.‖2 be convex on R}.

3.1. A DCA SCHEME

In the first approach we follow the general scheme DCA introduced by Pham Dinh
Tao in [22] (see also [15, 18, 19, 25]) to solve the d.c. program

β = inf{f (x) := g(x)− h(x) : x ∈ R
n} (22)

Here f and g belong to 10(R
n).

The dual program of the last is also d.c. ([24]):

β = inf{h∗(y)− g∗(y) : y ∈ R
n}. (23)

Here h∗ and g∗ are dual functions of h and g, respectively.
The DCA is a primal-dual subdifferential method based on the d.c. duality and

the local optimality. It consists in the construction of two sequences {xk} and {yk}
such that xk+1 (resp. yk) is a solution to the convex program (Pk) (resp. (Dk))
defined by

(Pk)

{
Minimize g(x)− [h(xk)+ 〈x − xk, yk〉]
s.t. x ∈ R

n

(Dk)

{
Minimize h∗(y)− [g∗(yk−1)+ 〈xk, y − yk−1〉]
s.t. y ∈ R

n .

In view of the relation: (Pk) (resp. (Dk)) is obtained from (22) (resp. (23)) by
replacing h (resp. g∗) with its affine minorization defined by yk ∈ ∂h(xk) (resp.
xk ∈ ∂g∗(yk−1)), the DCA yields the next scheme:

yk ∈ ∂h(xk); xk+1 ∈ ∂g∗(yk). (24)

By this way there hold ([15], [18], [24], [25])
(i) The sequences {g(xk)− h(xk)} and {h∗(yk)− g∗(yk)} are decreasing and

• g(xk+1)−h(xk+1) = g(xk)−h(xk) if and only if yk ∈ ∂g(xk)∩∂h(xk),
yk ∈ ∂g(xk+1) ∩ ∂h(xk+1) and [ρ(g)+ ρ(h)]‖xk+1 − xk‖ = 0.

• h∗(yk+1)−g∗(yk+1) = h∗(yk)−g∗(yk) if and only if xk+1 ∈ ∂g∗(yk)∩
∂h∗(yk), xk+1 ∈ ∂g∗(yk+1) ∩ ∂h∗(yk+1) and [ρ(g∗) + ρ(h∗)]‖yk+1 −
yk‖ = 0. DCA terminates at the kth iteration if either of the above
equalities holds.
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(ii) If ρ(g) + ρ(h) > 0 (resp. ρ(g∗) + ρ(h∗) > 0), then the series {‖xk+1 −
xk‖2} (resp. {‖yk+1 − yk‖2}) converges.

(iii) If the optimal value β of problem (Pd.c.) is finite and the sequences {xk} and
{yk} are bounded, then every limit point x∞ (resp. y∞) of the sequence {xk}
(resp. {yk}) is a critical point of g − h (resp. h∗ − g∗). (A point x is called a
critical point of g − h if ∂g(x) ∩ ∂h(x) �= ∅).

(iv) If DCA converges to a point that admits a neighbourhood in which the ob-
jective is finite and convex, and if the second d.c. component of the objective
function is differentiable at this point, then it is a local minimizer for (Pd.c.).

(v) DCA converges to a global minimizer for (Pd.c.) if f = g − h is actually
convex (f then is called “false” d.c. function).

The DCA was first introduced by Pham Dinh [22] and later developed in his joint
works with Le Thi, see, e.g. Le Thi [15], Le Thi–Pham Dinh [17, 18], Pham Dinh–
Le Thi [24, 25] and references therein. It is actually one of a few algorithms in the
local approach which has been successfully applied to many large-scale d.c. optim-
ization problems and proved to be more robust and efficient than related standard
methods. For all details of the DCA we refer the reader to the just mentioned
references.

It is well known that Tikhonov’s functional (2) is strongly convex in a neigh-
borhood of a solution c0, so if we start our DCA in an appropriate subset of
this neighborhood, we can get a global solution. However, it is hard to find this
neighborhood, and since DCA is a local method for global optimization, we shall
combine it with the branch-and-bound technique to find global solutions of the
problem.

To solve (21) by DCA we first take a ρ > 0 such that ρ/2‖x‖2−f (x) is convex.
Such a ρ always exists when f is twice continuously differentiable (see (14), (15)).
We then decompose the function f in the form

f (x) = ρ

2
‖x‖2 −

(ρ
2
‖x‖2 − f (x)

)
.

It is easily seen that with this d.c. decomposition DCA applied to (21) yields the
sequence

xk+1 = Proj-n
1 [ai ,bi ]

(
xk − 1

ρ
ξk

)
, with ξk ∈ ∂f (xk).

Here Proj-n
1 [ai ,bi ] is the orthogonal projection into the box -n

1[ai, bi ]. Immediate
advantages of this algorithm are: (1) it works when the function f is not given
in an explicit form, and (2) the projection of a point onto a box is explicitly and
inexpensively computed. The algorithm can be described as follows:
Algorithm 1 (DCA for (21)):

Let x0 be a point in R
n and ε be a sufficiently small positive number. Set er ←

ε + 1, k ← 0
Do while er � ε
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Compute ξk ∈ ∂f (xk). Set

yk = ρxk − ξk, with ξk ∈ ∂f (xk)

and

xk+1 = Proj-n
1 [ai ,bi ](y

k/ρ).

er ← ‖xk+1 − xk‖, k + 1 ← k

end do
We note that if f is differentiable, then ξk is nothing other than ∇f (xk).

3.2. A BRANCH-AND-BOUND ALGORITHM

3.2.1. Lower bound

In the bounding procedure we relax the objective function, knowing that it is
not given in an explicit form. As above we suppose that f is twice continuously
differentiable.

To compute a lower bound of f over a subrectangle B = {x : ri � xi � ri, :
i = 1, . . . , n} we find a convex minorization of f over B as follows. We express
f by another d.c. decomposition:

f (x) =
(ρ

2
‖x‖2 + f (x)

)
− ρ

2
‖x‖2 := g(x)− h(x),

and then approximate the concave function −h in B by its convex envelope over B
which is actually affine. The last, in fact, is −l(x), where

l(x) :=
n∑
i=1

li (xi) =
n∑
i=1

ρ

2
[(ri + ri)xi − riri] � h(x).

The function

f̃ (x) =
(ρ

2
‖x‖2 + f (x)

)
−

n∑
i=1

li (xi)

is convex and f̃ (x) � f (x) in B. A lower bound βB of f on B can be determined
by solving the convex program

βB := min{f̃ (x) : x ∈ B}. (25)

Since f is not explicitly defined, we can use the projection gradient method ([26])
to solve (25):

xk+1 = ProjB
(
xk − δkη

k
)
, δk → 0,

∞∑
k=0

δk = +∞ (26)
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where ηk is the gradient of f̃ at xk . However, this method converges rather slow.
We shall use DCA instead. To this end, we represent f̃ in the form

f̃ (x) = 2ρ

2
‖x‖2 −

(
ρ

2
‖x‖2 − f (x)+

n∑
i=1

li (xi)

)
.

DCA applied to the last has the form

xk+1 = ProjB

(
xk − 1

2ρ
(ρxk −∇f (xk)+

n∑
i=1

ρ

2
(ri + ri)ei

)
,

(ei being the ith vector of the canonical basic of R
n).

3.2.2. Upper bound

At each iteration one may update the upper bound by computing g(xB) − h(xB),
where xB is an optimal solution of (25). However, one can obtain a better upper
bound by using the DCA. In fact, if xB is the best current feasible point, then the
DCA starting with xB can provide a better feasible point. This is guaranteed by the
fact that the DCA generates the sequence {xk} such that {(g−h)(xk)} is decreasing
(see, e.g., [23, 25]).

3.2.3. Branching operation

Exploiting the special structure of the feasible set we use the rectangular subdivi-
sion for branching. Rectangular subdivision procedures play an important role in
branch-and-bound methods. The approach of Phillips-Rosen (see also Kalantari-
Rosen [7]) uses exhaustive subdivisions, i.e., any nested sequence of rectangles
generated by the algorithm will tend to a single point. In Horst-Tuy [10] a concept
of “normal rectangular subdivision” was introduced for the class of separable con-
cave minimization problems that includes the Kalantari-Rosen approach and a
subdivision proposed earlier in Falk-Soland [6]. In this paper we use the adaptive
bisection introduced in [17]. More precisely, let Bk = {y : lki � yi � Lk

i } be the
rectangle selected for subdivision. Choose an index ik satisfying

ik ∈ arg max
i
{lki(xBki )− hi(x

Bk
i )}

and subdivide Bk into two subrectangles

Bk1 = {y ∈ Bk : xik � x
Bk
ik
}, Bk2 = {y ∈ Bk : xik � x

Bk
ik
}.
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3.2.4. The combined DCA-branch-and-bound algorithm (BBDCA)

Initialization.
Set B0 := B

Solve the convex problem (by Projection subgradient method (26))

β0 := min{f̃ (x) : x ∈ B0}.
to obtain an optimal solution xB0 and a lower bound of the optimal value α.

Solve Problem (21) by the DCA from the starting point xB0 to obtain an upper
bound γ0 and a feasible point x0.

If γ0 − β0 � ε|γ0|, then stop ← true, x0 is an ε- optimal solution of (21)
else stop ← f alse

endif
Set R ← {B0}, k ← 0.

While stop = f alse do
Select a rectangle Bk ∈ R such that βk := βBk = min{βB : B ∈ R}.
Bisect Bk into Bk1 and Bk2 by the adaptive rectangular subdivision.
Solve Problems (CPki) (i=1,2)

(CPki) βBki := min{f̃ (x) : x ∈ Bki}
to obtain β(Bki) and xBki .

If xBki is the best point, i.e., f (xBki ) < γk−1, then update the upper bound γk by
applying the DCA to problem (21) from the starting point xBki .

Let xk be a point in K such that f (xk) = γk.
Set R ← R ∪ {Bki : β(Rki) < γk − ε|γk|, i = 1, 2}\{Bk}.
If R = ∅, then stop ← true, xk is an ε-optimal solution.
else Set k ← k + 1.
endif
endwhile

THEOREM 3.1. (Convergence of BBDCA). (i) If the algorithm terminates at the
iteration k, then xk is a global optimal solution to problem (21). (ii) If the algorithm
is infinite, then it generates a bounded sequence {xk} every accumulation point of
which is a global optimal solution of (21), and

γk ↘ α, βk ↗ α.

4. Numerical test

Consider the system

−uxx + c(x)u = f (x) in (0, 1),
u(0) = u(1) = 0,

(27)
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where f is L2(�). The coefficient c(x) is to be found from a noisy observation
z = uε ∈ L2(�) of u:

‖z − u‖L2(0,1) � ε.

Suppose that C := {0 < c1 � c � c2}. We shall minimize

Jα(c) = 1

2
‖u(c)− z‖2

L2(0,1) +
α

2
‖c − c∗‖2

L2(0,1)

over C with u(c) being the solution of (27). As it has been proved in section 2 that
(see (16))

J ′
α(c) = −u(c)ϕ + α(c − c∗),

where ϕ is the solution of the adjoint problem

−ϕxx + c(x)ϕ = u(c)− z in (0, 1),
ϕ(0) = ϕ(1) = 0.

(28)

To solve the above optimization problem we simply use the finite difference
method. We divide the interval [0, 1] into n equal subintervals: x0 = 0, x1 =
h, . . . , xi = ih, . . . , xn = 1, where h = 1/n. The finite difference scheme for
(27) takes the form

−ui+1 − 2ui + ui−1

h2 + ciui = fi, i = 1, 2, . . . , n− 1

u0 = un = 0.
(29)

Here we denote gi = g(xi) for any function g defined on [0, 1]. And the discrete
version of Jα is

Iα([c]) := 1

2

n−1∑
i=1

h|ui([c])− zi|2 + α

2

n−1∑
i=1

h(ci − c∗i )
2.

Here, we denote [c] = (c1, c2, . . . , cn−1).
The discrete adjoint problem is

−ϕi+1 − 2ϕi + ϕi−1

h2 + ciϕi = ui([c])− zi, i = 1, 2, . . . , n− 1

ϕ0 = ϕn = 0.
(30)

The gradient of Iα([c]) can be represented by

∂Iα([c])
∂ci

= −huiϕi + αh(ci − c∗i ), i = 1, 2, . . . , n− 1.

Thus, to find the gradient of Iα([c]), in every iteration we have to solve two
direct problems (29) and (30).
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Figure 1. First example: exact solution c = 1, “∗ ∗ ∗” for c∗ = x, “− − −” for c∗ = 1.1,
noise level ε = 10−3, CPU time < 1 min.

In the first test we take c(x) = 1, u(x) = sin(πx) and f = (π2 + 1) sin(πx).
In the second test we take c(x) = 1 + x2, u(x) = sin(πx), and f = sin(πx)(1 +
x2 + π2). The data z is u+ ε sin(nπx). The noise level ε in the both tests is 10−3,
and the dimension of discretization is n = 25.

The numerical results for these two examples are presented below. Our code was
written in FORTRAN 77 and run on a SUN-SPARC 20. We took ε = 10−7 and
ε = 10−3 in Algorithm 1 (DCA) and Algorithm BBDCA, respectively. DCA gives
in the most cases an optimal solution: the optimale value given by DCA is very
near zero and so we need not branching operation anymore. And the algorithm is
very fast, the CPU time of our algorithm in all cases is not greater than one minute.
Although numerical results are very good, we observed that the choice of the guess
function c∗ is crucial in the quality of the numerical results. A bad guess may lead
to bad numerical results. Thus, suggestions from the real world practice are quite
important in solving inverse problems (Figures 1 and 2).

5. Conclusions

We have suggested a useful method for solving an inverse problem for elliptic
equations which is well known to be non-linear and ill-posed. From our numerical
tests it seems to be quite efficient. The method is based on the standard Tikhonov
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Figure 2. Second example: exact solution c = 1 + x2, “...” for c∗ = 1.2 + x2, “+ + +” for
c∗ = 1 + x2, “−−−” for c∗ = 1.1 + x2, noise level ε = 10−3, CPU time < 1 min.

regularization method but in a further step: globally solve non-convex optimization
problems in Tikhonov’s regularization method which is a d.c. program. Such kind
of non-convex optimization problems has been very little studied in the inverse
problems community and there only only local methods are applied. Our aim is
to fill this gap in the literature. The DCA seems to fit well to many other non-
linear ill-posed problems, say non-convex quadratic problems ([20]), Hammerstein
equations, autoconvolution equations, bilinear inverse problems, etc ([21]).

References

1. Bui, H. D. (1994), Inverse Problems in the Mechanics of Materials, CRC Press, Boca Raton,
FL.

2. Chavent, G. and Kunisch, K. (1994) Convergence of Tikhonov regularization for constrained
ill-posed inverse problems, Inverse Problems 10: 63–76.

3. Colonius, F. and Kunisch, K. (1986), Stability for parameter estimation in two point boundary
value problem, J. Reine Angewandte Math. 370: 1–29.

4. Colonius, F. and Kunisch, K. (1989), Output least squares stability in elliptic systems, Appl.
Math. Opt. 19: 33-63.

5. Engl, H. W., Hanke, M. and Neubauer, A. (1996), Regularization of Inverse Problems, Kluwer
Academic Publishers, Dordrecht.

6. Falk, J. E. and Soland, R. M. (1969), An algorithm for separable nonconvex programming
problems, Management Science 15: 550–569.



INVERSE PROBLEM FOR AN ELLIPTIC EQUATION 423

7. Kalantari, B. and Rosen, J. B. (1987), Algorithm for global minimization of linearly constrained
concave quadratic functions, Mathematics of Operations Research 12: 544–561.

8. Engl, H. W., Kunisch, K. and Neubauer, A. (1989), Convergence rates for Tikhonov regularisa-
tion of non-linear ill-posed problems, Inverse Problems 5: 523–540,

9. Groetsch, Ch. W. (1993), Inverse Problems in the Mathematical Sciences. Friedr. Vieweg &
Sohn, Braunschweig.

10. Horst, R. and Tuy, H. (1993), Global Optimization: Deterministic Approaches, 2 edition,
Springer, Berlin, New York.

11. Isakov, V. (1998) Inverse Problems for Partial Differential Equations, Springer, New York.
12. Keller, J. B. (1976), Inverse problems, Amer. Math. Monthly 83: 107–118.
13. Kunisch, K. and Ring, W. (1993), Regularization of nonlinear ill-possed problems with closed

operators, Numer. Funct. Anal. Optimiz. 14: 389–404.
14. Ladyzhenskaya, O. A. (1985), The Boundary Value Problems of Mathematical Physics,

Springer, New York, Berlin, Heidelberg, Tokyo.
15. Le Thi Hoai An (1997), Contribution à l’optimisation non convexe et l’optimisation globale:

Théorie, Algorithmes et Applications , Habilitation à Diriger des Recherches, Université de
Rouen.

16. Le Thi Hoai An and Pham Dinh Tao (1997), Solving a class of linearly constrained indefinite
quadratic problems by d.c. algorithms, Journal of Global Optimization 11: 253–285.

17. Le Thi Hoai An and Pham Dinh Tao (1998), A branch-and-bound method via d.c. optimization
algorithm and ellipsoidal technique for box constrained nonconvex quadratic programming
problems, Journal of Global Optimization, 13: 171–206.

18. Le Thi Hoai An and Pham Dinh Tao (2001), The D.C. programming and DCA revisited with
D.C. models of real world nonconvex optimization problems, Proceedings of The 5th Inter-
national Conference on Optimization: Techniques and Applications, Hong Kong December
15-17, 2001 (ICOTA 2001) Editor D. Li, Volume 3, pp. 1324–1333.

19. Le Thi Hoai An and Pham Dinh Tao (2002), Large Scale Global Molecular Optimization from
exact distance matrices by a d.c. optimization approach, Revised version in SIAM Journal on
Optimization.

20. Le Thi Hoai An, Pham Dinh Tao, and Dinh Nho Hào (2001), On the ill-posedness of the trust
region subproblem. Journal of Inverse and Ill-Posed Problems (to appear)

21. Le Thi Hoai An, Pham Dinh Tao, and Dinh Nho Hào (2001), D.c. programming approach to
Tikhonov regularization for non-linear ill-posed problems, (in preparation).

22. Pham Dinh Tao and E. B. Souad (1986), Algorithms for solving a class of non convex op-
timization problems. Methods of subgradients, Fermat days 85. Mathematics for Optimization,
Elsevier, North-Holland, Amsterdam: 249–270.

23. Pham Dinh Tao and E. B. Souad (1988) Duality in d. c. (difference of convex functions)
optimization. Subgradient methods, Trends in Mathematical Optimization, International Series
of Numer Math. 84 (Birkhäuser), 277–293.

24. Pham Dinh Tao and Le Thi Hoai An (1998), D.c. optimization algorithms for solving the trust
region subproblem, SIAM J. Optimization 8: 476–505.

25. Pham Dinh Tao and Le Thi Hoai An (1997), Convex analysis approach to d.c. programming:
Theory, Algorithms and Applications. Acta Mathematica Vietnamica 22(1): 289–355.

26. Polyak, B. (1987), Introduction to Optimization. (Optimization Software Inc., Publication
Division, New York.

27. Rockafellar, R. T. (1970), Convex Analysis, Princeton University Press, Princeton.
28. Tikhonov, A. N., Leonov, A. S. and Yagola, A. G. (1998), Non-linear Ill-Posed Problems, Vol.

1, 2, Chapman and Hall, London.


